Skip to main content
Intellect

BYU IsoTruss technology makes for ultra-light bike

With a frame that's lighter, more aerodynamic and less breakable than many top-of-the-line counterparts, a new bicycle built by Brigham Young University engineers may soon change the face of cycling.

Made from carbon fiber intertwined with Kevlar string, the bike's frame employs civil engineering professor David W. Jensen's IsoTruss -- a cage-like, open tubular lattice that optimizes the inherent strength of reinforcing pyramids and triangles.

"The team's goal was to shrink the IsoTruss structure, which has been proven to work well for large-scale applications, from between 5 to 18 inches to about 1 inch in diameter," said Jensen. "Everybody involved has done a great job of accomplishing just that."

In 2002, the technology was licensed to Brigham City company IsoTruss Structures Inc., which uses it to build structures as strong as steel without the weight, like meteorological instrumentation towers and self-supporting utility poles.

As IsoTruss Structures works to market the technology, BYU researchers continue to test and develop new ways of applying it.

Tyler Evans, a senior in manufacturing engineering technology who worked on turning the IsoTruss into a bicycle, says the new geometry of the BYU bike frame generates double-takes on the mountainside, but is responsible for a cycle that's as light as, and stronger and more aerodynamic than some of the best traditional carbon-fiber mountain bikes on the market.

"This frame weighs in at 3 ¼ pounds, and we're confident the next one will be less than 3 pounds," says Tyler, also a mountain bike enthusiast. "That's a big deal in the cycling world."

Bigger yet, the BYU engineers are working to reverse the reality of "light bike, heavy price" by streamlining their manufacturing process to make ultra-light racers -- normally priced in the "$5,000 and over" range -- more affordable for cyclists everywhere.

Read More From

Related Articles

data-content-type="article"

BYU researchers play central role in state's approval of drought-resistant grass in Utah

July 17, 2024
In the midst of a sweltering heat wave, the state of Utah this week approved a type of grass that will have a critical impact on future water conservation — and a couple of BYU professors (and their students) have been a key part in making it happen.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

It's not rocket science... it's rocket engineering: BYU's Rocketry Team wins big again

July 11, 2024
The BYU Rocketry Team and their Utah-inspired rocket named “Alta” got on the podium three times, earning two first prizes and a second-place finish at the 2024 Spaceport America Cup.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

BYU study reveals fireworks’ impact on air quality

July 01, 2024
Fireworks' dazzling displays bring hidden dangers to Wasatch Front air.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=