Skip to main content
Intellect

BYU IsoTruss technology makes for ultra-light bike

With a frame that's lighter, more aerodynamic and less breakable than many top-of-the-line counterparts, a new bicycle built by Brigham Young University engineers may soon change the face of cycling.

Made from carbon fiber intertwined with Kevlar string, the bike's frame employs civil engineering professor David W. Jensen's IsoTruss -- a cage-like, open tubular lattice that optimizes the inherent strength of reinforcing pyramids and triangles.

"The team's goal was to shrink the IsoTruss structure, which has been proven to work well for large-scale applications, from between 5 to 18 inches to about 1 inch in diameter," said Jensen. "Everybody involved has done a great job of accomplishing just that."

In 2002, the technology was licensed to Brigham City company IsoTruss Structures Inc., which uses it to build structures as strong as steel without the weight, like meteorological instrumentation towers and self-supporting utility poles.

As IsoTruss Structures works to market the technology, BYU researchers continue to test and develop new ways of applying it.

Tyler Evans, a senior in manufacturing engineering technology who worked on turning the IsoTruss into a bicycle, says the new geometry of the BYU bike frame generates double-takes on the mountainside, but is responsible for a cycle that's as light as, and stronger and more aerodynamic than some of the best traditional carbon-fiber mountain bikes on the market.

"This frame weighs in at 3 ¼ pounds, and we're confident the next one will be less than 3 pounds," says Tyler, also a mountain bike enthusiast. "That's a big deal in the cycling world."

Bigger yet, the BYU engineers are working to reverse the reality of "light bike, heavy price" by streamlining their manufacturing process to make ultra-light racers -- normally priced in the "$5,000 and over" range -- more affordable for cyclists everywhere.

Read More From

Related Articles

data-content-type="article"

Wildfires in residential areas are on the rise; why hydrants and the water system behind them were never meant to stop those fires

July 01, 2025
BYU professor Rob Sowby teaches and studies environmental engineering, urban water infrastructure and sustainability. He has particular expertise in the planning, design, construction and operation of public water systems. That expertise has been increasingly important (and regularly sought out) in the wake of apocalyptic wildfires that have taxed those public water systems.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Meet the BYU math student helping make wildfire predictions faster and smarter

June 25, 2025
Using machine learning and math, a BYU student improved a key tool firefighters rely on during wildfire season
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Geology meets history: BYU professor studies WWII shrapnel on Normandy beaches

June 05, 2025
Eighty years after D-Day, BYU geologists uncover lingering WWII shrapnel on Normandy beaches to study how history still shapes the coastline today.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=