Skip to main content
Intellect

Nature and electronics meet: How to make a tiny wire and connect it to DNA

Using the structure of DNA as electrical circuitry in computer chips may shrink the costs of production in the field of nano-electronics.

In a new study published in Chemistry of Materials, a team of Brigham Young University scientists introduces a method for making tiny wires on an insulating surface and connecting them at pre-determined points on a strand of DNA.

“We’re using a bottom-up approach to see if we can get things like DNA, proteins and other chemicals to assemble exactly where we direct them,” said Matthew Linford, associate professor of chemistry and biochemistry at BYU. “We hope this will provide new models for shrinking the size for semiconductor chips.”

The study’s publication coincides with the award of a $1 million grant from the National Science Foundation for the BYU researchers to continue the project. The grant will fund the project for four years with the goal of advancing the use of DNA as a template for tiny electrical circuits.

The process begins by etching a carefully controlled pattern onto a surface using an atomic force microscope. This is done in a chemical solution that leaves an extremely thin layer of metal over the pattern, making tiny wires. To these wires, the researchers bind strands of DNA that become the scaffolding for an electrical circuit.

“What we are borrowing from nature is the great flexibility DNA has to form a wide variety of shapes,” said Robert Davis, associate professor of physics and astronomy at BYU. “The DNA is also robust and can handle a wide variety of conditions.”

Along with the prospect for developing a cheaper way to make computer chips, the researchers hope their work leads to devices that are packed more densely than today’s semiconductors.

The project crosses three disciplines at BYU: chemical engineering, chemistry and physics. Joining Linford and Davis on the NSF grant award is John Harb, professor of chemical engineering and associate dean of the Ira A. Fulton College of Engineering and Technology; Dean Wheeler, assistant professor of chemical engineering; and Adam Woolley, associate professor of chemistry and biochemistry. Woolley is also a recent recipient of the Presidential Early Career Award for Scientists and Engineers, the government’s highest honor offered to young scientists.

Students at the graduate and undergraduate level also assist the project in the lab and benefit from exposure to scientific fields other than their major.

“This is providing the students with outstanding training across a number of disciplines,” Linford said. “If you go into industry, people have problems to solve and it doesn’t matter what discipline you tap into to solve that problem.”

Writer: Marissa Ballantyne

Related Articles

data-content-type="article"

BYU’s space ace: Minor planet named in honor of Jani Radebaugh

April 10, 2024
BYU planetary geology professor Jani Radebaugh’s contributions to planetary science have reached cosmic proportions as she recently received the prestigious honor of having a minor planet named her. The asteroid, previously known as “45690,” now bears the name “45690janiradebaugh” on official NASA/JPL websites.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

BYU team helps create diagnostic tool that achieves accuracy of PCR tests with faster, simpler nanopore system

April 09, 2024
A new diagnostic tool developed by Brigham Young University and UC Santa Cruz researchers can test for SARS-CoV-2 and Zika virus with the same or better accuracy as high-precision PCR tests in a matter of hours.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

BYU professor’s designs featured on new Congressional Gold Medal

April 03, 2024
A new Congressional Gold Medal featuring the designs of BYU illustration professor Justin Kunz was recently unveiled at a ceremony held at the U.S. Capitol in Washington, D.C.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=