Skip to main content
Intellect

How to spell B-Y-U with DNA

Researchers from Brigham Young University found how to shape customized segments of DNA into tiny letters that spell “BYU.” This new method of DNA origami will appear in the aptly titled journal Nano Letters.

The letters are about 100 nanometers in size. That’s roughly a billion times smaller than the block Y on the mountain overlooking BYU’s campus and 1/1000 the width of a human hair.

The team’s larger pursuit is to design nanoscale shapes for electrical circuitry and make tiny – yet inexpensive – computer chips. For more on that endeavor read this story.

DNA origami came on the scene a few years ago when a computer scientist at Caltech wove strands of DNA into smiley faces and other shapes. But until now scientists had to hunt for viruses and microbes whose DNA strands were the right length for the particular task. That’s like building a log cabin without a saw: Instead of cutting the trees down to size, you have to size your cabin to the trees available.

The BYU researchers instead replicate DNA to make strands precisely as long or as short as they need.

BYU chemistry professor Adam Woolley authored the paper with three of his students, Elisabeth Pound, Jeffrey Ashton and Hector Becerril. Ashton is an undergraduate.

“I was blown away when the students were able to make B’s,” Woolley said. “Right angle shapes, that’s one thing. But to make something with curves and multiple intersections, I thought ‘Wow, that is really cool.’”

The work is funded by a $1 million grant from the National Science Foundation to advance the field of nanoelectronics.

“This very quickly went from the initial design of a simple rectangle shape to more sophisticated branching,” Woolley said. “It’s a testament to the quality of graduate students and undergraduates we have here in our department and at BYU in general.”

Related Articles

data-content-type="article"

BYU engineers, Toyota partner to create ‘new standard in automotive manufacturing’

October 28, 2024
A new welding technique developed by BYU and Toyota for the Sienna’s sliding doors uses 40 times less energy, emits fewer emissions, and produces welds that are 10 times stronger. This new process, called refill friction stir spot welding, could prove critical as Toyota and other car manufacturers rely more and more on lighter aluminum parts.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

Pedal to the medal: BYU animated short film races to Student Academy Award

October 23, 2024
BYU animation students ranked third in the world with recent Student Academy Award.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

Beyond diet: New BYU study links diesel exhaust to obesity and diabetes

October 09, 2024
A study co-authored by eight BYU students and three BYU faculty finds that exposure to the exhaust gas produced by diesel engines is tied to increased fat mass, enlarged fat cells, insulin resistance and inflammation. These changes can cause metabolic conditions such as obesity, diabetes, and heart disease.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=