Skip to main content
Intellect

Shuttle launches BYU student-designed circuit into space

  • Graduate students designed a specialized circuit that launched with Endeavour.
  • The circuit is part of a chip that can be reprogrammed remotely.
  • The chips will be tested to see how they hold up against harsh space conditions. 

When the shuttle Endeavour launched  Monday morning there was a little bit of BYU on board. A BYU research team designed a highly specialized type of circuit that could improve the reliability of current NASA technology.

The launch attracted extra attention because it’s the second-to-last shuttle mission, and it is commanded by the husband of Gabrielle Giffords, the Arizona Congresswoman wounded in a shooting earlier this year.

Michael Wirthlin led the team that designed the circuit inside a chip known as a Field Programmable Gate Array (FPGA). Such chips are unique because they can be programmed remotely.  This prevents time-consuming space walks where astronauts would have to work on hardware devices. All of the necessary work can be done from NASA command center on Earth.

“It is a really unique opportunity for our students to design a circuit that can go up in space,” said Wirthlin, associate professor of electrical and computer engineering. “Those students will now evaluate the effectiveness of their circuit. It is very rare to participate in this whole process.”

Current graduate student William Howes was one of those students.

“It was definitely a great opportunity and something that not too many students have the chance to do,” Howes said. “To be able to tell others that there’s something in space that I designed is amazing. It has helped me a lot in searching for jobs and in my graduate degree.”

FPGAs have been used in space before. For example, the Mars Rover had older versions on board. The FPGAs that BYU is researching are much more powerful. They will be on the Endeavor for long-term data collection to see how they react to harsh space conditions.

“For FPGAs, radiation is a problem,” Howes said. “If the FPGA gets hit in the wrong way, it could make the computation come out incorrect.”

BYU’s team hopes to make the FPGAs radiation-tolerant. If the experiments are successful, the techniques created by BYU students could show how the FPGAs can be used safely and reliably.

Writer: Matt Hopkins

Related Articles

data-content-type="article"

BYU origami-inspired chair design featured on Mark Rober’s Top 10 list

November 07, 2024
A futuristic BYU-designed, origami-inspired Flex Chair, cut out of a single piece of flat material and folded into shape, has made YouTuber Mark Rober’s Top 10 list. In a Nov. 2 video post, Rober spotlights the chair at #7 on his list of Crunch Lab builds in the past year, and credits BYU compliant mechanisms researchers for the innovative design.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

BYU and the U: Rivals on the field, teammates in the lab

November 07, 2024
Over the past 10 years, BYU professors coauthored a staggering 1,388 publications with colleagues at the University of Utah. While athletic competitions between the two schools produce a lot of headlines, academic collaborations produce a lot of research.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

BYU engineers, Toyota partner to create ‘new standard in automotive manufacturing’

October 28, 2024
A new welding technique developed by BYU and Toyota for the Sienna’s sliding doors uses 40 times less energy, emits fewer emissions, and produces welds that are 10 times stronger. This new process, called refill friction stir spot welding, could prove critical as Toyota and other car manufacturers rely more and more on lighter aluminum parts.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=