Scientists grow micro-machines (and "nano Jimmer") from carbon - BYU News Skip to main content
Intellect

Scientists grow micro-machines (and "nano Jimmer") from carbon

A Brigham Young University physics student and his professor had some fun with their new method of growing tiny machines from carbon molecules.

We’ve seen some creative ways of making tiny BYU logos before, like engraving these nano-sized letters in silica and shaping these even smaller letters from DNA strands. But growing a nano-logo? That’s probably a first on campus.

Here is how BYU physics professor Robert Davis and his student Taylor Wood do it: They start by patterning the iron seeds of the logo onto an iron plate. Next they send heated gas flowing across the surface, and a forest of carbon nano-tubes springs up.

“It’s a really fragile structure at this point – blowing on it or touching it would destroy it,” Davis said. “We developed a process to coat and strengthen the tubes so that we can make microstructures that have practical applications.”

Another student, Jun Song, used the process to make devices that quickly and neatly separate the various chemicals contained in a solution. The technique is detailed by the BYU physicists in a new study published in the scientific journal Advanced Functional Materials.

As demonstrated in the paper, their approach using carbon nanotubes is more precise than current chemical separation methods because it gives more control over the channels that the fluids flow through. That’s why the company US Synthetic licensed the commercial rights from BYU.

Designing little logos and separating chemicals isn’t all the BYU researchers are doing, either. They’re also building several kinds of micro-machines including actuators, switches and humidity-detecting cantilevers. Next on their agenda is to create filtration devices. Another company, Moxtek, also entered into a licensing agreement with BYU for applications to their X-ray windows.

“The technology is moving in a lot of directions,” said Davis.

Physics professor Richard Vanfleet and chemistry professor Matthew Linford also contributed to the project and appear as co-authors on the new study. Two researchers from US Synthetic also appear as co-authors.  

See more of their work at nano.byu.edu.

Related Articles

data-content-type="article"

BYU’s 2025 awards season honors student standouts

May 15, 2025
Rise and shout! Across various disciplines, BYU students have been recognized for their world-class accomplishments.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Student inventors help BYU rank as a top U.S. university for newly-issued patents

May 12, 2025
Brigham Young University was just ranked as one of the Top 100 universities in the nation for most issued patents. But the new ranking from the National Academy of Inventors isn’t the story for BYU; it’s who holds the patents.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

BYU research: Your beliefs about money may reveal clues about your relationship

May 07, 2025
Everyone holds their own beliefs about money – what it’s for, how much we need and how to use it. But a new study from researchers at BYU says personal beliefs about money also shape the health of your relationship.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=