Skip to main content
Intellect

Futuristic computing designs inside beetle scales

Though it began as a science fair project involving a shiny Brazilian beetle, Lauren Richey’s research may advance the pursuit of ultra-fast computers that manipulate light rather than electricity.

While still at Springville High School, Lauren approached Brigham Young University professor John Gardner about using his scanning electron microscope to look at the beetle known as Lamprocyphus augustus.

When Lauren and Professor Gardner examined the scales, they noticed something unusual for iridescent surfaces: They reflected the same shade of green at every angle. The reason? Each beetle scale contained a crystal with a honeycomb-like interior that had the same structural arrangement as carbon atoms in a diamond.

What that has to do with futuristic computers is a stretch, but here is how the two connect: Scientists have long dreamed of computer chips based on light rather than electricity. In “optical computing,” chips would need photonic crystals to channel light particles. That’s easier said than done when dealing with high frequencies such as visible light.

During her first year at BYU, Lauren co-authored a study describing the photonic properties of these beetle scales. In reaction, one photonics expert told Wired that “This could motivate another serious round of science.”

Potentially these beetle scales could serve as a mold or template to which semiconductor material, like titanium or silica, can be added. The original beetle material can then be removed with acid leaving an inverse structure of the beetle crystal, a now usable photonic crystal in the visible light regions. 

“By using nature as templates, you can create things that you cannot make synthetically,” Lauren said.

Now two years shy of a degree in physics, Lauren received funding from ORCA to examine the photonic crystal structures of two more species of iridescent beetles. With the help of a new ion beam microscope, she’s so far nailed down the structure of one (it’s a “face-centered cubic array of nanoscopic spheres”) and is still working on the other.

From BYU, Lauren hopes to launch into a Ph.D. program at either MIT or Cal-Berkeley and continue research in photonics.

ORCA grants: What they are and how to get one

Every year BYU awards several hundred undergraduates $1,500 for a research or creative project of their own choosing.

While the projects span a wide range of fields, they all involve mentored learning outside the classroom. The skills and experience gained along the way open doors to grad schools, employers and entrepreneurship. Mentored learning is part of why BYU ranks in the Top 10 nationally in terms of where new Ph.D.s received their undergraduate degrees – and why BYU is a top feeder school for law, medicine and dentistry.

ORCA is accepting applications through October 29. Click here to apply.

__________________________________________

Follow BYU News on Twitter: twitter.com/byu

Read More From

Related Articles

data-content-type="article"

BYU student shines in prestigious Chinese Bridge competition, attracting over 100 million viewers

September 25, 2025
BYU sophomore Ashley Breinholt placed second in the global finals of the Chinese Bridge competition on Aug. 24 in China. Breinholt’s finish marks the highest placement ever achieved by a BYU student in the event’s 24-year history.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

I love to see the temple… but I need a microscope

September 23, 2025
In honor of BYU’s 150th anniversary, electrical engineering professor Greg Nordin and student Callum Galloway have created 150 microscopic replicas of existing LDS temples, all on a 12-by-19 millimeter microchip. Each of these unique temples — 150 different floor plans to celebrate 150 years of BYU — is less than a grain of rice in length.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

New BYU microscopes offer atomic-level imaging, student-led research

September 09, 2025
At many universities, student researchers rarely get the chance to even see a transmission electron microscope, or TEM, up close—let alone use one. At BYU, undergraduate students are about to run the show.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= promoTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=