Skip to main content
Intellect

Scientists grow micro-machines (and "nano Jimmer") from carbon

A Brigham Young University physics student and his professor had some fun with their new method of growing tiny machines from carbon molecules.

We’ve seen some creative ways of making tiny BYU logos before, like engraving these nano-sized letters in silica and shaping these even smaller letters from DNA strands. But growing a nano-logo? That’s probably a first on campus.

Here is how BYU physics professor Robert Davis and his student Taylor Wood do it: They start by patterning the iron seeds of the logo onto an iron plate. Next they send heated gas flowing across the surface, and a forest of carbon nano-tubes springs up.

“It’s a really fragile structure at this point – blowing on it or touching it would destroy it,” Davis said. “We developed a process to coat and strengthen the tubes so that we can make microstructures that have practical applications.”

Another student, Jun Song, used the process to make devices that quickly and neatly separate the various chemicals contained in a solution. The technique is detailed by the BYU physicists in a new study published in the scientific journal Advanced Functional Materials.

As demonstrated in the paper, their approach using carbon nanotubes is more precise than current chemical separation methods because it gives more control over the channels that the fluids flow through. That’s why the company US Synthetic licensed the commercial rights from BYU.

Designing little logos and separating chemicals isn’t all the BYU researchers are doing, either. They’re also building several kinds of micro-machines including actuators, switches and humidity-detecting cantilevers. Next on their agenda is to create filtration devices. Another company, Moxtek, also entered into a licensing agreement with BYU for applications to their X-ray windows.

“The technology is moving in a lot of directions,” said Davis.

Physics professor Richard Vanfleet and chemistry professor Matthew Linford also contributed to the project and appear as co-authors on the new study. Two researchers from US Synthetic also appear as co-authors.  

See more of their work at nano.byu.edu.

Related Articles
data-content-type="article"
July 16, 2019
Christine Hurt, associate dean and professor at BYU Law, delivered Tuesday’s forum address in the de Jong Concert Hall about capital markets and human flourishing.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"
July 16, 2019
Researchers from BYU and the Netherlands’ Delft University of Technology may have figured out a secret to get people to buy more fresh produce: dress veggies up in black.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"
July 10, 2019
Learning more about a specific protein complex and how it works is a stepping stone for others who might look for cancer therapies or ways to help treat diabetes and other diseases.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection=false overrideCardHideByline=false overrideCardHideDescription=false overridebuttonBgColor= overrideButtonText=